Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
1.
J Ethnopharmacol ; 313: 116559, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37116730

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Exocarpium Citri grandis (ECG, Huajuhong in Chinese), the epicarp of C. grandis 'Tomentosa', has been used for hundreds of years as an anti-inflammatory, expectorant, hypoglycemic, and lipid-lowering medication in China. Nevertheless, there have been few papers that have explored the mechanism behind ECG's hypolipidemic characteristics from the perspective of treating nonalcoholic fatty liver disease (NAFLD). AIM OF STUDY: The purpose of our study was to confirm the therapeutic and preventative effects of ECG in NAFLD by regulating lipid accumulation and iron metabolism, and to explore the specific mechanism of ECG in enhancing hepatic iron transport and excretion capabilities. STUDY DESIGN: We constructed a NAFLD model by feeding male C57BL/6 J mice with a high-fat diet for 12 weeks. Mice were gavaged with ECG beginning in the seventh week of modeling, and three dosage gradients were established: low dose group (2.5 g/kg/d), medium dose group (5 g/kg/d) y, and high dose group (10 g/kg/d) until the end of model construction in week 12. MATERIALS AND METHODS: We used network pharmacology to analyze the relationship between ECG and NAFLD. In addition, we constructed a nonalcoholic fatty liver disease model by feeding male C57BL/6 J mice a high-fat diet for 12 weeks. Finally, lipid accumulation, iron accumulation, inflammation and oxidative stress were evaluated by serological index detection, histological detection, immunofluorescent and immunohistochemical staining, and western blotting. RESULTS: Network pharmacology confirmed the treatment effect of ECG in NAFLD. Three active components of ECG, including Naringenin, Naringin and Neohesperidin, were detected by UHPLC-HRMS analysis. The results of serum TC, TG, LDL concentration, HE staining, Oil red staining and Nile red staining demonstrated that ECG could improve lipid metabolism disorders. The results of serum iron concentration, liver tissue iron concentration, iron metabolism-related proteins Ferritin light chain, Ferroportin1, Transferrin receptor, and Transferrin demonstrated that ECG improved the iron transport and storage capacities of hepatic cells. CONCLUSIONS: Our results demonstrated that ECG relieved liver injury by inhibiting lipid accumulation and iron accumulation in NAFLD.


Assuntos
Distúrbios do Metabolismo do Ferro , Hepatopatia Gordurosa não Alcoólica , Camundongos , Masculino , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Camundongos Endogâmicos C57BL , Fígado , Distúrbios do Metabolismo do Ferro/metabolismo , Distúrbios do Metabolismo do Ferro/patologia , Ferro/metabolismo , Lipídeos/farmacologia , Metabolismo dos Lipídeos , Dieta Hiperlipídica/efeitos adversos
2.
Int J Mol Sci ; 23(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35562883

RESUMO

Iron homeostasis disruption has increasingly been implicated in various neurological disorders. In this review, we present an overview of our current understanding of iron metabolism in the central nervous system. We examine the consequences of both iron accumulation and deficiency in various disease contexts including neurodegenerative, neurodevelopmental, and neuropsychological disorders. The history of animal models of iron metabolism misregulation is also discussed followed by a comparison of three patients with a newly discovered neurodegenerative disorder caused by mutations in iron regulatory protein 2.


Assuntos
Distúrbios do Metabolismo do Ferro , Doenças Neurodegenerativas , Animais , Sistema Nervoso Central/metabolismo , Homeostase , Humanos , Ferro/metabolismo , Distúrbios do Metabolismo do Ferro/metabolismo , Proteína 2 Reguladora do Ferro/metabolismo , Doenças Neurodegenerativas/metabolismo
3.
Life Sci ; 297: 120485, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35304126

RESUMO

AIMS: Multiple mitochondrial dysfunction (MMD) can lead to complex damage of mitochondrial structure and function, which then lead to the serious damage of various metabolic pathways including cerebral abnormalities. However, the effects of MMD on heart, a highly mitochondria-dependent tissue, are still unclear. In this study, we use iron-sulfur cluster assembly 1 (Isca1), which has been shown to cause MMD syndromes type 5 (MMDS5), to verify the above scientific question. MAIN METHODS: We generated myocardium-specific Isca1 knockout rat (Isca1flox/flox/α-MHC-Cre) using CRISPR-Cas9 technology. Echocardiography, magnetic resonance imaging (MRI), histopathological examinations and molecular markers detection demonstrated phenotypic characteristics of our model. Immunoprecipitation, immunofluorescence co-location, mitochondrial activity, ATP generation and iron ions detection were used to verify the molecular mechanism. KEY FINDINGS: This study was the first to verify the effects of Isca1 deficiency on cardiac development in vivo, that is cardiomyocytes suffer from mitochondria damage and iron metabolism disorder, which leads to myocardial oncosis and eventually heart failure and body death in rat. Furthermore, forward and reverse validation experiments demonstrated that six-transmembrane epithelial antigen of prostate 3 (STEAP3), a new interacting molecule for ISCA1, plays an important role in iron metabolism and energy generation impairment induced by ISCA1 deficiency. SIGNIFICANCE: This result provides theoretical basis for understanding of MMDS pathogenesis, especially on heart development and the pathological process of heart diseases, and finally provides new clues for searching clinical therapeutic targets of MMDS.


Assuntos
Cardiomiopatias , Distúrbios do Metabolismo do Ferro , Animais , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Distúrbios do Metabolismo do Ferro/metabolismo , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Ratos
4.
Neuroimage ; 245: 118752, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34823024

RESUMO

AIMS: Non-invasive measures of brain iron content would be of great benefit in neurodegeneration with brain iron accumulation (NBIA) to serve as a biomarker for disease progression and evaluation of iron chelation therapy. Although magnetic resonance imaging (MRI) provides several quantitative measures of brain iron content, none of these have been validated for patients with a severely increased cerebral iron burden. We aimed to validate R2* as a quantitative measure of brain iron content in aceruloplasminemia, the most severely iron-loaded NBIA phenotype. METHODS: Tissue samples from 50 gray- and white matter regions of a postmortem aceruloplasminemia brain and control subject were scanned at 1.5 T to obtain R2*, and biochemically analyzed with inductively coupled plasma mass spectrometry. For gray matter samples of the aceruloplasminemia brain, sample R2* values were compared with postmortem in situ MRI data that had been obtained from the same subject at 3 T - in situ R2*. Relationships between R2* and tissue iron concentration were determined by linear regression analyses. RESULTS: Median iron concentrations throughout the whole aceruloplasminemia brain were 10 to 15 times higher than in the control subject, and R2* was linearly associated with iron concentration. For gray matter samples of the aceruloplasminemia subject with an iron concentration up to 1000 mg/kg, 91% of variation in R2* could be explained by iron, and in situ R2* at 3 T and sample R2* at 1.5 T were highly correlated. For white matter regions of the aceruloplasminemia brain, 85% of variation in R2* could be explained by iron. CONCLUSIONS: R2* is highly sensitive to variations in iron concentration in the severely iron-loaded brain, and might be used as a non-invasive measure of brain iron content in aceruloplasminemia and potentially other NBIA disorders.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Ceruloplasmina/deficiência , Distúrbios do Metabolismo do Ferro/diagnóstico por imagem , Distúrbios do Metabolismo do Ferro/metabolismo , Ferro/metabolismo , Imageamento por Ressonância Magnética/métodos , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/metabolismo , Autopsia , Ceruloplasmina/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Países Baixos , Fenótipo
5.
Hematology ; 26(1): 896-903, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34789084

RESUMO

ABSTRACTObjectives: Hereditary hyperferritinaemia cataract syndrome (HHCS) is an autosomal dominant disease characterized by high serum ferritin levels and juvenile bilateral cataracts. It is often caused by mutations in the iron response element (IRE) of the ferritin L-subunit (FTL) gene. Here, we report a 73-year-old woman who presented to clinic with persistently elevated serum ferritin and family history of juvenile bilateral cataracts in four generations.Methods: Exome sequencing was used to identify the mutation of the FTL gene. Moreover, Sanger sequencing was performed to validate the mutation in the proband. We also reviewed the FLT gene mutations in published HHCS cases to provide experience for accurate diagnosis of similar patients.Results: A heterozygous mutation at position +33 (c.-167C > T, chr19:49468598) of the FTL gene was identified in the patient.Discussion: HHCS should be considered in the differential diagnosis of hyperferritinemia, especially in the presence of normal serum iron concentration and transferrin saturation.Conclusion: For patients with unexplained hyperferritinemia and bilateral cataracts who have experienced early vision loss, the establishment of genetic counseling is essential to diagnose other family members who are at risk in time.Abbreviations: FTL: ferritin L-subunit; HHCS: hereditary hyperferritinaemia cataract syndrome; IDT: integrated DNA technologies; IRE: iron response element; IRP: iron regulatory proteins; MRI: magnetic resonance imaging; SNV: single nucleotide variant; UTR: untranslated region.


Assuntos
Apoferritinas/genética , Catarata/congênito , Distúrbios do Metabolismo do Ferro/congênito , Mutação , Idoso , Alelos , Apoferritinas/sangue , Biomarcadores , Catarata/diagnóstico , Catarata/genética , Catarata/metabolismo , Catarata/terapia , Análise Mutacional de DNA , Feminino , Genótipo , Humanos , Ferro/metabolismo , Distúrbios do Metabolismo do Ferro/diagnóstico , Distúrbios do Metabolismo do Ferro/genética , Distúrbios do Metabolismo do Ferro/metabolismo , Distúrbios do Metabolismo do Ferro/terapia , Linhagem , Elementos de Resposta/genética , Avaliação de Sintomas
6.
Sci Rep ; 11(1): 22568, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799629

RESUMO

WDR45 plays an essential role in the early stage of autophagy. De novo heterozygous mutations in WDR45 have been known to cause ß-propeller protein-associated neurodegeneration (BPAN), a subtype of neurodegeneration with brain iron accumulation (NBIA). Although BPAN patients display global developmental delay with intellectual disability, the neurodevelopmental pathophysiology of BPAN remains largely unknown. In the present study, we analyzed the physiological role of Wdr45 and pathophysiological significance of the gene abnormality during mouse brain development. Morphological and biochemical analyses revealed that Wdr45 is expressed in a developmental stage-dependent manner in mouse brain. Wdr45 was also found to be located in excitatory synapses by biochemical fractionation. Since WDR45 mutations are thought to cause protein degradation, we conducted acute knockdown experiments by in utero electroporation in mice to recapitulate the pathophysiological conditions of BPAN. Knockdown of Wdr45 caused abnormal dendritic development and synaptogenesis during corticogenesis, both of which were significantly rescued by co-expression with RNAi-resistant version of Wdr45. In addition, terminal arbors of callosal axons were less developed in Wdr45-deficient cortical neurons of adult mouse when compared to control cells. These results strongly suggest a pathophysiological significance of WDR45 gene abnormalities in neurodevelopmental aspects of BPAN.


Assuntos
Encéfalo/metabolismo , Proteínas de Transporte/metabolismo , Distúrbios do Metabolismo do Ferro/metabolismo , Degeneração Neural , Distrofias Neuroaxonais/metabolismo , Neurogênese , Animais , Axônios/metabolismo , Axônios/patologia , Encéfalo/embriologia , Células COS , Proteínas de Transporte/genética , Chlorocebus aethiops , Dendritos/metabolismo , Dendritos/patologia , Sinapses Elétricas/metabolismo , Sinapses Elétricas/patologia , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Idade Gestacional , Distúrbios do Metabolismo do Ferro/embriologia , Distúrbios do Metabolismo do Ferro/genética , Distúrbios do Metabolismo do Ferro/patologia , Camundongos Endogâmicos ICR , Distrofias Neuroaxonais/embriologia , Distrofias Neuroaxonais/genética , Distrofias Neuroaxonais/patologia , Transdução de Sinais
7.
Int J Mol Sci ; 22(9)2021 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-33923052

RESUMO

Proper functioning of all organs, including the brain, requires iron. It is present in different forms in biological fluids, and alterations in its distribution can induce oxidative stress and neurodegeneration. However, the clinical parameters normally used for monitoring iron concentration in biological fluids (i.e., serum and cerebrospinal fluid) can hardly detect the quantity of circulating iron, while indirect measurements, e.g., magnetic resonance imaging, require further validation. This review summarizes the mechanisms involved in brain iron metabolism, homeostasis, and iron imbalance caused by alterations detectable by standard and non-standard indicators of iron status. These indicators for iron transport, storage, and metabolism can help to understand which biomarkers can better detect iron imbalances responsible for neurodegenerative diseases.


Assuntos
Doença de Alzheimer/diagnóstico , Biomarcadores/sangue , Encéfalo/metabolismo , Ferroptose/fisiologia , Ferro/metabolismo , Doença de Alzheimer/metabolismo , Biomarcadores/líquido cefalorraquidiano , Encéfalo/patologia , Ceruloplasmina/deficiência , Ceruloplasmina/metabolismo , Ferritinas/sangue , Ferritinas/líquido cefalorraquidiano , Ferritinas/metabolismo , Humanos , Ferro/sangue , Ferro/líquido cefalorraquidiano , Distúrbios do Metabolismo do Ferro/metabolismo , Imageamento por Ressonância Magnética , Doenças Neurodegenerativas/metabolismo , Estresse Oxidativo/fisiologia , Transferrina/líquido cefalorraquidiano , Transferrina/metabolismo
8.
Int J Mol Sci ; 22(4)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546372

RESUMO

Since Yachie et al. reported the first description of human heme oxygenase (HO)-1 deficiency more than 20 years ago, few additional human cases have been reported in the literature. A detailed analysis of the first human case of HO-1 deficiency revealed that HO-1 is involved in the protection of multiple tissues and organs from oxidative stress and excessive inflammatory reactions, through the release of multiple molecules with anti-oxidative stress and anti-inflammatory functions. HO-1 production is induced in vivo within selected cell types, including renal tubular epithelium, hepatic Kupffer cells, vascular endothelium, and monocytes/macrophages, suggesting that HO-1 plays critical roles in these cells. In vivo and in vitro studies have indicated that impaired HO-1 production results in progressive monocyte dysfunction, unregulated macrophage activation and endothelial cell dysfunction, leading to catastrophic systemic inflammatory response syndrome. Data from reported human cases of HO-1 deficiency and numerous studies using animal models suggest that HO-1 plays critical roles in various clinical settings involving excessive oxidative stress and inflammation. In this regard, therapy to induce HO-1 production by pharmacological intervention represents a promising novel strategy to control inflammatory diseases.


Assuntos
Anemia Hemolítica/metabolismo , Transtornos do Crescimento/metabolismo , Heme Oxigenase-1/deficiência , Heme Oxigenase-1/metabolismo , Distúrbios do Metabolismo do Ferro/metabolismo , Estresse Oxidativo , Animais , Humanos , Inflamação
9.
Cell Mol Life Sci ; 78(7): 3355-3367, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33439270

RESUMO

Neuroferritinopathy is a rare autosomal dominant inherited movement disorder caused by alteration of the L-ferritin gene that results in the production of a ferritin molecule that is unable to properly manage iron, leading to the presence of free redox-active iron in the cytosol. This form of iron has detrimental effects on cells, particularly severe for neuronal cells, which are highly sensitive to oxidative stress. Although very rare, the disorder is notable for two reasons. First, neuroferritinopathy displays features also found in a larger group of disorders named Neurodegeneration with Brain Iron Accumulation (NBIA), such as iron deposition in the basal ganglia and extrapyramidal symptoms; thus, the elucidation of its pathogenic mechanism may contribute to clarifying the incompletely understood aspects of NBIA. Second, neuroferritinopathy shows the characteristic signs of an accelerated process of aging; thus, it can be considered an interesting model to study the progress of aging. Here, we will review the clinical and neurological features of neuroferritinopathy and summarize biochemical studies and data from cellular and animal models to propose a pathogenic mechanism of the disorder.


Assuntos
Apoferritinas/metabolismo , Distúrbios do Metabolismo do Ferro/patologia , Ferro/metabolismo , Distrofias Neuroaxonais/patologia , Animais , Humanos , Distúrbios do Metabolismo do Ferro/metabolismo , Distrofias Neuroaxonais/metabolismo
10.
Neuropathol Appl Neurobiol ; 47(1): 26-42, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32464705

RESUMO

AIMS: Neuroferritinopathy (NF) or hereditary ferritinopathy (HF) is an autosomal dominant movement disorder due to mutation in the light chain of the iron storage protein ferritin (FTL). HF is the only late-onset neurodegeneration with brain iron accumulation disorder and study of HF offers a unique opportunity to understand the role of iron in more common neurodegenerative syndromes. METHODS: We carried out pathological and biochemical studies of six individuals with the same pathogenic FTL mutation. RESULTS: CNS pathological changes were most prominent in the basal ganglia and cerebellar dentate, echoing the normal pattern of brain iron accumulation. Accumulation of ferritin and iron was conspicuous in cells with a phenotype suggesting oligodendrocytes, with accompanying neuronal pathology and neuronal loss. Neurons still survived, however, despite extensive adjacent glial iron deposition, suggesting neuronal loss is a downstream event. Typical age-related neurodegenerative pathology was not normally present. Uniquely, the extensive aggregates of ubiquitinated ferritin identified indicate that abnormal FTL can aggregate, reflecting the intrinsic ability of FTL to self-assemble. Ferritin aggregates were seen in neuronal and glial nuclei showing parallels with Huntington's disease. There was neither evidence of oxidative stress activation nor any significant mitochondrial pathology in the affected basal ganglia. CONCLUSIONS: HF shows hallmarks of a protein aggregation disorder, in addition to iron accumulation. Degeneration in HF is not accompanied by age-related neurodegenerative pathology and the lack of evidence of oxidative stress and mitochondrial damage suggests that these are not key mediators of neurodegeneration in HF, casting light on other neurodegenerative diseases characterized by iron deposition.


Assuntos
Apoferritinas/metabolismo , Encéfalo/efeitos dos fármacos , Distúrbios do Metabolismo do Ferro/metabolismo , Ferro/metabolismo , Distrofias Neuroaxonais/metabolismo , Animais , Apoferritinas/química , Apoferritinas/genética , Encéfalo/patologia , Modelos Animais de Doenças , Ferritinas/química , Ferritinas/genética , Ferritinas/metabolismo , Humanos , Distúrbios do Metabolismo do Ferro/patologia , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mutação/genética , Distrofias Neuroaxonais/patologia , Doenças Neurodegenerativas/patologia , Estresse Oxidativo/efeitos dos fármacos , Agregados Proteicos/fisiologia
11.
Sci Rep ; 10(1): 20666, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33244127

RESUMO

The role of abnormal brain iron metabolism in neurodegenerative diseases is still insufficiently understood. Here, we investigate the molecular basis of the neurodegenerative disease hereditary ferritinopathy (HF), in which dysregulation of brain iron homeostasis is the primary cause of neurodegeneration. We mutagenized ferritin's three-fold pores (3FPs), i.e. the main entry route for iron, to investigate ferritin's iron management when iron must traverse the protein shell through the disrupted four-fold pores (4FPs) generated by mutations in the ferritin light chain (FtL) gene in HF. We assessed the structure and properties of ferritins using cryo-electron microscopy and a range of functional analyses in vitro. Loss of 3FP function did not alter ferritin structure but led to a decrease in protein solubility and iron storage. Abnormal 4FPs acted as alternate routes for iron entry and exit in the absence of functional 3FPs, further reducing ferritin iron-storage capacity. Importantly, even a small number of MtFtL subunits significantly compromises ferritin solubility and function, providing a rationale for the presence of ferritin aggregates in cell types expressing different levels of FtLs in patients with HF. These findings led us to discuss whether modifying pores could be used as a pharmacological target in HF.


Assuntos
Apoferritinas/metabolismo , Ferro/metabolismo , Polímeros/metabolismo , Apoferritinas/genética , Encéfalo/metabolismo , Microscopia Crioeletrônica/métodos , Homeostase/genética , Homeostase/fisiologia , Humanos , Distúrbios do Metabolismo do Ferro/genética , Distúrbios do Metabolismo do Ferro/metabolismo , Mutação/genética , Distrofias Neuroaxonais/genética , Distrofias Neuroaxonais/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo
12.
Eur J Paediatr Neurol ; 28: 81-88, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32811771

RESUMO

BACKGROUND: Neurodegeneration with brain iron accumulation constitutes a group of rare progressive movement disorders sharing intellectual disability and neuroimaging findings as common denominators. Beta-propeller protein-associated neurodegeneration (BPAN) represents approximately 7% of the cases, and its first signs are typically epilepsy and developmental delay. We aimed to describe in detail the phenotype of BPAN with a special focus on iron metabolism. MATERIAL AND METHODS: We present a cohort of paediatric patients with pathogenic variants of WD-Repeat Domain 45 gene (WDR45). The diagnosis was established by targeted panel sequencing of genes associated with epileptic encephalopathies (n = 9) or by Sanger sequencing of WDR45 (n = 1). Data on clinical characteristics, molecular-genetic findings and other performed investigations were gathered from all participating centres. Markers of iron metabolism were analysed in 6 patients. RESULTS: Ten children (3 males, 7 females, median age 8.4 years) from five centres (Prague, Berlin, Vogtareuth, Tubingen and Cologne) were enrolled in the study. All patients manifested first symptoms (e.g. epilepsy, developmental delay) between 2 and 31 months (median 16 months). Seven patients were seizure-free (6 on antiepileptic medication, one drug-free) at the time of data collection. Neurological findings were non-specific with deep tendon hyperreflexia (n = 4) and orofacial dystonia (n = 3) being the most common. Soluble transferrin receptor/log ferritin ratio was elevated in 5/6 examined subjects; other parameters of iron metabolism were normal. CONCLUSION: Severity of epilepsy often gradually decreases in BPAN patients. Elevation of soluble transferrin receptor/log ferritin ratio could be another biochemical marker of the disease and should be explored by further studies.


Assuntos
Proteínas de Transporte/genética , Distúrbios do Metabolismo do Ferro/genética , Distúrbios do Metabolismo do Ferro/metabolismo , Ferro/sangue , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Biomarcadores/sangue , Criança , Epilepsia/sangue , Epilepsia/genética , Epilepsia/metabolismo , Feminino , Humanos , Deficiência Intelectual/sangue , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Distúrbios do Metabolismo do Ferro/sangue , Masculino , Transtornos dos Movimentos/sangue , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/metabolismo , Doenças Neurodegenerativas/sangue , Fenótipo
13.
Life Sci ; 258: 118135, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32712297

RESUMO

In mammals, ferroportin (FPN) is the only known iron exporter, and it functions as a "water tap" in controlling iron absorption from the diet, iron egress from macrophages and other cells. However, its function is implemented not by itself but by a complex with many partners involved. In the current study, we elaborate on the direct partners in calibrating the capability of FPN in exporting iron out of cells, such as ceruloplasmin (CP), hephaestin (HP) and poly(rC)-binding protein 2 (PCBP2). We also recapitulate the current understandings of the regulation of FPN concentration at the post-transcriptional level. Considering the importance of FPN in finetuning iron homeostasis, a few therapeutic options are pursued to target FPN and its partners in treating iron diseases. Nonetheless, limited knowledge has been obtained on direct and indirect partners of FPN, so that more efforts should be invested including their therapeutic values.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Células/metabolismo , Distúrbios do Metabolismo do Ferro/metabolismo , Ferro/metabolismo , Animais , Humanos , Distúrbios do Metabolismo do Ferro/genética , Ligação Proteica , Transcrição Gênica
14.
Am J Obstet Gynecol ; 223(4): 516-524, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32184147

RESUMO

Iron is essential for the function of all cells through its roles in oxygen delivery, electron transport, and enzymatic activity. Cells with high metabolic rates require more iron and are at greater risk for dysfunction during iron deficiency. Iron requirements during pregnancy increase dramatically, as the mother's blood volume expands and the fetus grows and develops. Thus, pregnancy is a condition of impending or existing iron deficiency, which may be difficult to diagnose because of limitations to commonly used biomarkers such as hemoglobin and ferritin concentrations. Iron deficiency is associated with adverse pregnancy outcomes, including increased maternal illness, low birthweight, prematurity, and intrauterine growth restriction. The rapidly developing fetal brain is at particular risk of iron deficiency, which can occur because of maternal iron deficiency, hypertension, smoking, or glucose intolerance. Low maternal gestational iron intake is associated with autism, schizophrenia, and abnormal brain structure in the offspring. Newborns with iron deficiency have compromised recognition memory, slower speed of processing, and poorer bonding that persist despite postnatal iron repletion. Preclinical models of fetal iron deficiency confirm that expected iron-dependent processes such as monoamine neurotransmission, neuronal growth and differentiation, myelination, and gene expression are all compromised acutely and long term into adulthood. This review outlines strategies to diagnose and prevent iron deficiency in pregnancy. It describes the neurocognitive and mental health consequences of fetal iron deficiency. It emphasizes that fetal iron is a key nutrient that influences brain development and function across the lifespan.


Assuntos
Desenvolvimento Fetal/fisiologia , Deficiências de Ferro , Distúrbios do Metabolismo do Ferro/tratamento farmacológico , Complicações na Gravidez/tratamento farmacológico , Oligoelementos/uso terapêutico , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Feminino , Humanos , Ferro/metabolismo , Ferro/fisiologia , Ferro/uso terapêutico , Distúrbios do Metabolismo do Ferro/epidemiologia , Distúrbios do Metabolismo do Ferro/metabolismo , Distúrbios do Metabolismo do Ferro/fisiopatologia , Transtornos Mentais/epidemiologia , Transtornos do Neurodesenvolvimento/epidemiologia , Gravidez , Complicações na Gravidez/epidemiologia , Complicações na Gravidez/metabolismo , Complicações na Gravidez/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/epidemiologia
15.
Magn Reson Imaging ; 70: 29-35, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32114188

RESUMO

OBJECTIVES: Aceruloplasminemia (ACP) is a rare autosomal recessive disorder characterized by intracranial and visceral iron overload. With R2*-based imaging or quantitative susceptibility mapping (QSM), it is feasible to measure iron in the brain quantitatively, although to date this has not yet been done for patients with ACP. The aim of this study was to provide quantitative iron measurements for each affected brain region in an ACP patient with the potential to do so in all future ACP patients. This may shed light on the link between brain iron metabolism and the territories affected by ceruloplasmin function. METHODS: We imaged a patient with ACP using a 3T magnetic resonance imaging scanner with a fifteen-channel head coil. We manually demarcated gray matter and white matter on the Strategically Acquired Gradient Echo (STAGE) images, and calculated values for susceptibility and R2* in these regions. Correlation analysis was performed between the R2* values and the susceptibility values. RESULTS: Besides the usual territories affected in ACP, we also discovered that the mammillary bodies and the lateral habenulae had significant increases in iron, and the hippocampus was severely affected both in terms of iron content and abnormal tissue signal. We also noted that the iron in the cortical gray matter appeared to be deposited in the inner layers. Moreover, several pathways between the superior colliculus and the pulvinar thalamus, between the caudate and putamen anteriorly and between the caudate and pulvinar thalamus posteriorly were also evident. Finally, R2* correlated strongly with the QSM data (R2 = 0.67, t = 6.78, p < 0.001). CONCLUSION: QSM and R2* have proven to be sensitive and quantitative means by which to measure iron content in the brain. Our findings included several newly noted affected brain regions of iron overload and provided some new aspects of iron metabolism in ACP that may be further applicable to other pathologic conditions. Furthermore, our study may pave the way for assessing efficacy of iron chelation therapy in these patients and for other common iron related neurodegenerative disorders.


Assuntos
Ceruloplasmina/deficiência , Distúrbios do Metabolismo do Ferro/metabolismo , Ferro/metabolismo , Doenças Neurodegenerativas/metabolismo , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Ceruloplasmina/metabolismo , Feminino , Humanos , Distúrbios do Metabolismo do Ferro/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Doenças Neurodegenerativas/diagnóstico por imagem
16.
Stem Cell Reports ; 13(5): 832-846, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31587993

RESUMO

Neuroferritinopathy (NF) is a movement disorder caused by alterations in the L-ferritin gene that generate cytosolic free iron. NF is a unique pathophysiological model for determining the direct consequences of cell iron dysregulation. We established lines of induced pluripotent stem cells from fibroblasts from two NF patients and one isogenic control obtained by CRISPR/Cas9 technology. NF fibroblasts, neural progenitors, and neurons exhibited the presence of increased cytosolic iron, which was also detectable as: ferritin aggregates, alterations in the iron parameters, oxidative damage, and the onset of a senescence phenotype, particularly severe in the neurons. In this spontaneous senescence model, NF cells had impaired survival and died by ferroptosis. Thus, non-ferritin-bound iron is sufficient per se to cause both cell senescence and ferroptotic cell death in human fibroblasts and neurons. These results provide strong evidence supporting the primary role of iron in neuronal aging and degeneration.


Assuntos
Ferroptose , Distúrbios do Metabolismo do Ferro/patologia , Ferro/metabolismo , Distrofias Neuroaxonais/patologia , Neurônios/patologia , Células Cultivadas , Senescência Celular , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Distúrbios do Metabolismo do Ferro/metabolismo , Pessoa de Meia-Idade , Distrofias Neuroaxonais/metabolismo , Neurônios/metabolismo
17.
Metallomics ; 11(10): 1635-1647, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31513212

RESUMO

In mammals, the iron storage and detoxification protein ferritin is composed of two functionally and genetically distinct subunit types, H (heavy) and L (light). The two subunits co-assemble in various ratios, with a tissue specific distribution, to form shell-like protein structures of 24 subunits within which a mineralized iron core is stored. The H-subunits possess ferroxidase centers that catalyze the rapid oxidation of ferrous ions, whereas the L-subunit does not have such centers and is believed to play an important role in electron transfer reactions that occur during the uptake and release of iron. Pathogenic mutations on the L-chain lead to neuroferritinopathy, a neurodegenerative disease characterized by abnormal accumulation of ferritin inclusion bodies and iron in the central nervous system. Here, we have characterized the thermal stability, iron loading capacity, iron uptake, and iron release properties of ferritin heteropolymers carrying the three pathogenic L-ferritin mutants (L154fs, L167fs, and L148fs, which for simplicity we named Ln1, Ln2 and Ln3, respectively), and a non-pathogenic variant (L135P) bearing a single substitution on the 3-fold axes of L-subunits. The UV-Vis data show a similar iron loading capacity (ranging between 1800 to 2400 Fe(iii)/shell) for all ferritin samples examined in this study, with Ln2 holding the least amount of iron (i.e. 1800 Fe(iii)/shell). The three pathogenic L-ferritin mutants revealed higher rates of iron oxidation and iron release, suggesting that a few mutated L-chains on the heteropolymer have a significant effect on iron permeability through the ferritin shell. DSC thermograms showed a strong destabilization effect, the severity of which depends on the location of the frameshift mutations (i.e. wt heteropolymer ferritin ≅ homopolymer H-chain > L135P > Ln2 > Ln1 > Ln3). Variant L135P had only minor effects on the protein functionality and stability, suggesting that local melting of the 3-fold axes in this variant may not be responsible for neuroferritinopathy-like disorders. The data support the hypothesis that hereditary neuroferritinopathies are due to alterations of ferritin functionality and lower physical stability which correlate with the frameshifts introduced at the C-terminal sequence and explain the dominant transmission of the disorder.


Assuntos
Apoferritinas/genética , Apoferritinas/metabolismo , Distúrbios do Metabolismo do Ferro/genética , Ferro/metabolismo , Distrofias Neuroaxonais/genética , Apoferritinas/química , Humanos , Distúrbios do Metabolismo do Ferro/metabolismo , Modelos Moleculares , Distrofias Neuroaxonais/metabolismo , Oxirredução , Mutação Puntual , Estabilidade Proteica , Desdobramento de Proteína
18.
Biomed Pharmacother ; 118: 109068, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31404774

RESUMO

NBIA (Neurodegeneration with brain iron accumulation) is a group of inherited neurologic disorders characterized by marked genetic heterogeneity, in which iron atypical accumulates in basal ganglia resulting in brain magnetic resonance imaging changes, histopathological abnormalities, and neuropsychiatric clinical symptoms. With the rapid development of high-throughput sequencing technologies, ten candidate genes have been identified, including PANK2, PLA2G6, C19orf12, WDR45, FA2H, ATP13A2, FTL, CP, C2orf37, and COASY. They are involved in seemingly unrelated cellular pathways, such as iron homeostasis (FTL, CP), lipid metabolism (PLA2G6, C19orf12, FA2H), Coenzyme A synthesis (PANK2, COASY), and autophagy (WDR45, ATP13A2). In particular, PANK2, COASY, PLA2G6, and C19orf12 are located on mitochondria, which associate with certain subtypes of NBIA showing mitochondria dysregulation. However, the relationships among those four genes are still unclear. Therefore, this review is specifically focused on dysregulation of mitochondria in NBIA and afore-mentioned four genes, with summaries of both pathological and clinical findings.


Assuntos
Fosfolipases A2 do Grupo VI/genética , Distúrbios do Metabolismo do Ferro/genética , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Distrofias Neuroaxonais/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Transferases/genética , Humanos , Distúrbios do Metabolismo do Ferro/metabolismo , Distúrbios do Metabolismo do Ferro/patologia , Metabolismo dos Lipídeos/genética , Potencial da Membrana Mitocondrial/genética , Distrofias Neuroaxonais/metabolismo , Distrofias Neuroaxonais/patologia
20.
Glia ; 67(9): 1760-1774, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31162719

RESUMO

Developmental iron deficiency (dID) models facilitate the study of specific oligodendrocyte (OL) requirements for their progression to a mature state and subsequent contribution to myelination. In the current work, we used the dID model in transgenic mice expressing green fluorescence protein under the CNPase promoter allowing the identification of cells belonging to the oligodendroglial lineage, and the visualization of the entire myelin structure and single OL morphology. The present work evaluates dID effects on OL complexity in different brain areas. Control animals showed an increase in OL complexity both during development and along the anterior-posterior axis. In contrast, dID animals exhibited an initial increase in CNPase+ cells with prevalence of immature-OL (i-OL), an effect later compensated during development by selective death of those i-OL. As a consequence, developmental behavior was impaired in terms of body balance, muscle response, and sensorimotor functions. To explore why i-OL fail to mature in dID, expression levels of transcriptional factors involved in the maturation of the OL lineage were studied. In nuclear fractions, dID animals showed an increase in Hes5, which prevents the maturation of i-OL, and a decrease in Sox10, a positive regulator of OL maturation. The cytoplasmic fractions showed a decrease in Olig1, which is critical for precursor cell differentiation into premyelinating OL. Overall, the expression levels of Hes5, Sox10, and Olig1 in dID conditions correlated with an unfavorable OL maturation profile. In sum, the current results provide further evidence of dID impact on myelination, keeping OL away from the maturational path.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Deficiências de Ferro , Distúrbios do Metabolismo do Ferro/metabolismo , Oligodendroglia/metabolismo , Fenômenos Fisiológicos da Nutrição Pré-Natal , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Distúrbios do Metabolismo do Ferro/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oligodendroglia/patologia , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...